changes in properties of keratin fibers

March 31, 2016 | Author: Ashley Hensley | Category: N/A
Share Embed Donate


Short Description

1 j. Soc. Cosmet. Chem., 38, (November/December 1987) The chlorine-hair interaction.. Review of mechanisms and changes i...

Description

j. Soc.Cosmet. Chem.,38, 359-370 (November/December1987)

The chlorine-hair interaction. I. Review of mechanisms and

changesin propertiesof keratinfibers N. B. FAIR and B. S. GUPTA, University of Missouri-Columbia,

Columbia, MO 65211 (N.B.F.), andNorthCarolinaStateUniversity, Raleigh,NC 27695-8301 (B.S.G.). Received April 23, 1987. Synopsis

A reviewof mechanisms involvedin the interactionof halogens (primarilychlorine)with keratinfibersis presented. The subsequent effectof chlorination on properties of keratinfibers,includingchemicalreactivity, surfaceproperties,weightloss,andmechanical propertiesis alsoreviewed.

INTRODUCTION

Human hair is commonlyexposed to chlorinein swimmingpoolswith possibledeleteriouseffects.An understanding of the reactionof chlorinewith the component structuresof hair and of the effectsof chlorineon hair propertiesis essentialif effective anti-chlorine products areto be developed. Unfortunately,little hasbeenpublishedon the natureof the chlorine-hair interaction. Informationof possible reactions andeffects, however,canbeobtainedby examiningrelatedliterature,whichincludesthe halogenation of wool, peptides,aminoacids,and disulfides. A substantialamount of technicalliterature existson the reactionof wool, a keratin

fiberlikehair, with chlorine(andotherhalogens). Chlorination hasbeenusedcommerciallyforshrinkproofing woolenfabricsandinvolves theuseof relativelystrongconcentrationsof chlorine(2-4% basedon the weight of the fabric),low liquor-to-fabric ratios,andshortreactiontimes. Exposureof hair to chlorine,in contrast,involvesmuch

weakerconcentrations (0.5-3 ppm), but usuallymuchgreaterliquor-to-fiberratiosand reactiontimes. In the shrinkproofingtreatmentsgiven to wool, chlorinationhasbeen shownto alter the surfacemorphology,primarilythroughbreakageof disulfidebonds and alsopeptidebondsin the proteinousmaterialof the fiber. Mechanismsfor these cleavagereactionsin keratin fibers, however,havenot beenwell understoodbecauseof

the verycomplexstructureof thesefibers.Also,reactionproductshavebeendifficultto

obtain,since,with the exception of spectroscopic assays, thefibersaregenerally hydrolyzedinto their component aminoacidsbeforean analysis is made.Consequently, themoremacroscopic effects ofhalogenation treatments, suchaschanges in thephysical andthe mechanical properties, generallyhavebeenfollowed.However,someinsight 359

360

JOURNALOF THE SOCIETYOF COSMETICCHEMISTS

into the reactionmechanisms occurringin keratinfiberscanbe obtainedfrom studiesof reactions of halogens with simplerstructures--disulfides, aminoacidsandpeptides.In this review, therefore,thesereactionsare examinedalongwith their generaleffecton the physicalpropertiesof the fibers.

REACTION REACTION

MECHANISMS VARIABLES

The most importantvariablein the reactionof halogenswith kerarinfibershas been shownro be the pH of the reactionmedium(1-7). Dependingon the pH, halogensare presenteitherasX 2, a aliaromicmolecule;HOX, a weakacid;or OX-, a strongbase. Reactionraresin aqueous chlorinarion,determinedby reductionof the amountof active chlorinein solutionwith rime, are extremelyrapid belowpH 2, somewhatslowerbur relativelyconstantin the pH rangeof 3-7, and muchslowerabovepH 8 (1-6). The very rapidreactionin the acid regionhasbeenattributedro the formationof chloraminesin additionto oxidation(6-7). The constantrateof reactionbetweenpH 3-7 has been explainedby the similar diffusionraresof C12and HOC1, both of which are neutral species(3). The reducedrate of reactionin the alkaline region (3) has been attributed ro the surfacechargeof wool fibers, which hasbeendeterminedro be negative (8). The fiber will thus tend ro repel the negativelychargedhypochlorireions, prohibiting their penetrationinto the fiber. Other variablesalsoaffectthe rareof reactionof halogenswith kerarinfibers. The rare of reactionincreases with stirring and remainsconstantover a wide rangeof stirring speeds(3,9-11), suggestingthat diffusionthrougha liquid layeris nor the rare-determining stepbur rhardiffusioninto the fiber is. Stirringgivesthe leasteffecton reaction rare in the alkalineregion. The rate of reactionalsohasbeenfoundro increasewith the temperatureof the reactionmedium (12,10,12). Finally, the size of the fibers also affectsthe rareof reaction.Generally,the finer the fibers,the higherthe reactionrare. This hasbeenattributed ro the finer fibershavinggreatersurfacearea(9). DISULFIDE

BOND

OXIDATION

Although chlorineis capableof reactingwith all aminoacidspresentin keratinfibers, cystineand tyrosinearefoundto be particularlysusceptible to attack(13-15). Cystine generallyis oxidizedto cysteicacid(13-23), but intermediatesulfurcompounds are alsopossiblewhich could break down during the amino acid analysisof the protein (22). Insight into the possibleintermediatecompounds canbe obtainedby a reviewof the reactionof halogenswith simpledisulfides.A pathwaysummarizingreactionsof disulfidesand chlorine(24) is illustratedin Figure 1.

Cystineis readilyoxidizedin the acid-neutralregion,but muchlesssoin the alkaline region(7,18,25). Alexanderetal. (19) attributedthis reactivityto the presence of two separatecystinefractionsin wool, oneof which is not accessible to the hypochloriteion. Earlandand Raven(20), instead,concluded that the attackof the hypochlorite ion is not restrictedto the disulfidebondbut proceeds moregenerallyin the woolfiber. The ideaof a generalattackis reinforcedby the fact that lanthionine(Cy-S-Cy)hasalsobeen foundamongthe reactionproductsin the alkalineregion(18), suggestingthat nonoxi-

REVIEW

OF CHLORINE-HAIR

INTERACTION

361

R'CHCISCI

N

RSCI

HO

:

RSOCl

CI

H O

2

RSSR + Cl

2

2

; RSCl

RSOH 2

CI

• RSO Cl 2

: RSOH

HO

3

2

RSO

2

SR

Figure 1. Interrelationships of the productsfrom the chlorinationof alkyl disulfides.

dativeC-Sfissioncouldalsobe takingplace.A mechanism suggested for this reaction involvesa bimolecular[3-elimination of the disulfidegroupinitiatedby a protonabstraction fromthetx-carbon by theattackof a nucleophile (26) (Figure2). Tyrosinealso hasbeenfoundto bemorereadilyoxidizedin theacidregionthanin thealkalineregion (13,21,22,25,27,28).

N-CHLORO

COMPOUNDS

N-chloro compounds canbe of two typesin proteinousmaterials,either a chloramine,

formedby the chlorination of a terminalaminogroup,or a chloramide, formedby the chlorinationof a peptidebond.Someauthorshavesuggested that N-chlorocompounds are formedas a first stepin the oxidationof wool by chlorine(4,6,7,23). Othershave suggested that N-chloro compounds are formedbut play no further part in the oxidation process,and remaina part of the keratinfiber (4,6,29,30). All amino acidshave beenfound capableof beingchlorinatedand oxidizedat the aminogroup (31-35). Monochloramines (RNHC1) and dichloramines(RNHC12) are readily formed. Monochloraminesare relativelystablein slightly basicand slightly acidicsolutions,while dichloramines arerelativelystableonly belowpH 6 (36,37). Oxidationis generallyan oxidativedeamination,resultingin the formationof an aidehyde.In cystine,however, the predominantreactionis oxidationof the disulfidegroup(31,38), with little or no oxidative

deamination.

The effectof halogenscanbe expectedto be moreimportanton the amidegroupthan on the amino group in protein materials,sincethe peptide bond, consistingof the amidegroup, is much moreprevalentthan the aminogroupin thesestructures.Chloramides,however,are not readilyformedunderconditionsby which cystineis oxidized. For example, Pereira eta/. (39) reacted N-acetylalanine in HOCI solution at room temperaturefor 48 hours.No amidechlorinationtook place.Theseauthorsalsochlorinated a seriesof dipeptidesand found that only the terminal amino groupswere reacted.Other researchers havereportedsimilarresults(36,37,40,41). However,McLaughlinand Simpson(9) did find that in the acid chlorinationof wool, a lag period existedduringwhichchlorinewasconsumed by the fibersandno protonswerereleased.

362

JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS OHH

O

-C-C-NI

O

H

II

I

-C-C-N-

-C-C?N-

CH2

Il

CH2

CH2

S

I s

H

.--

I s

.•

CH2

CH2 I

I

I

-C-C-N/ OHH /•

-C-C-N-

(•H2

II I I

II I I OHH

/

-C-C-NII I I

OHH O

H

II

I

OHH

II I I -C-C-NI

-C-C-N-

Il

CH2

CH2

I

.--

S I

.

CH2 I -C-C-N-

CH2 I -C-C-N-

II I I OHH

OHH Figure 2. Mechanismfor lanthionineformation.

They equatedprotonreleasewith reductionof chlorineand suggested that in the lag period,N-chlorocompounds are formedwhichsubsequently breakdown.They also founda moredirect relationshipbetweenchlorineconsumptionand protonreleasein weak ratherthan strongsolutionsat pH 3, suggestingthat strongerchlorineconcentrationsareneededfor the formationof N-chlorocompounds. KantouchandAbdel-Fattah (18) alsofound that mild chlorinationconditionsdid not produceN-chloro derivatives in wool.

PEPTIDE

BOND

CLEAVAGE

Somepeptidebondcleavage iscertainly expected to occurduringchlorination ofkeratin

REVIEW

OF CHLORINE-HAIR

INTERACTION

363

fibers.In chlorinating wool,Valk (22) foundaminoacidresidues in the spentchlorine reactionliquors at all Ph levels.

It hasbeensuggested that peptidebondcleavage canoccurin woolat the tyrosine residue.Studieson the bromination of tyrosinepeptideshaveindicateda probable mechanism (Figure3) (42,43). Tyrosinepeptides(I) arereadilybrominated in bromine waterto 3,5-dibromotyrosyl residues (II). Furtherbromination rupturesthe tyrosyl peptidebond by way of tribromodienone (III) and iminolactone(IV) intermediates, resultingin a new N-terminalpeptidefragmentand a dibromodienone spirolactone (V). The dibromodienone spirolactone (V) ultimatelyresultsin the C-terminal3,5 di(I)

(11)

(111)

R'-CH-CONHR R'-CH-CONHR •s•,,.• •IHE I I CH

II 2

OH

2Br

CH

+

O• "•CH R'

2. Br'"12 Br • •Br Bd• OH

O

•Br

+ Hfin 3

Br"'

•Br

Br"'

•Br

(V) IHBr R'-CH-COOH

I

Br

I

Br

OH

Figure 3. Mechanismof cleavageof the tyrosyJpeptidebond with brominewater.

364

JOURNALOF THE SOCIETYOF COSMETICCHEMISTS

bromotyrosylresidue(VI). This reactionappearsmore likely to take placein the acid region than in the neutral or the alkaline regions.The reactionproposedby Gold-

schmidt(44) may be the moreprevalentroutein the alkalineregion(Figure4). The hydrogenabstractionassociated with the formationof lanthioninecould also lead to peptidebond cleavageunderalkalineconditions.

EFFECT CHEMICAL

ON CHEMICAL

AND

PHYSICAL

PROPERTIES

OF KERATIN

FIBERS

REACTIVITY

The effectproducedby halogenson keratinfibershasbeencharacterized by a numberof chemicaltests. Alkali solubility, indicating the extent to which disulfide fissionhas taken place, has beenfound to be the greatestwhen the chlorinationtreatmentwas carriedout in the regionbetweenpH 4 and 7 (2, 13,22,45). Urea-bisulfitesolubility, indicating the extent to which both peptide and disulfide bond cleavagehave taken place, hasbeenfound to be higher in the acid region,and it decreases with increasein pH of the chlorinesolution(13,22,46).

The basebindingcapacityof woolhasalsobeenfoundto increase greatlywith chlorina-

H NCHCONHCCONHCHCO

R

R'

H

R"

NaOBr

I

NH

.CH."CO=H

,

NaOBr

Figure 4. Oxidativedegradauonof pepridesat the N-terminal aminoacidby hypobromite.

REVIEW

OF CHLORINE-HAIR

INTERACTION

365

tion (9, 13,18,22). The increased capacityis mostlikely due to the formationof sulfonic acidgroupswhichresultfrom disulfidebondscission andcarboxylgroupswhich result from the cleavage of peptidebonds.The acidbindingcapacityof chlorinatedwool has been found to be lower than that of unreacted wool. This reduction has been attributed

to the lossof amino groupsin the formationof chloraminesand to the possibilityof bondsforming betweenexistingaminogroupsand sulfonicacid groups(13). Chlorinationhasbeenshownto enhancethe affinity of wool for all typesof commercial dyes,althoughthe dye retentiongenerallyhas not beenimproved(16,47-57). The increasedaffinity hasbeenattributed to the damageimparted by chlorineto the fiber surfacelayers,enablinggreaterdye penetrationinto the interior of the fibers(16,55). SURFACE

PROPERTIES

Shrinkageof woolengoodswhenwetted(andagitated)hasbeenshownto arisefrom the directionalcharacterof the fiber'scuticularstructure.In particular,shrinkagehasbeen linked to the difference in the values of the coefficients of friction

measured with

the

fiberssliding "against"the scalesand the fiberssliding"with" the scales(pba-pbw). This difference is known as the differential friction effect, or DFE. Frictional studies on

keratinfiberssubjectedto chlorinetreatmentshowthat this treatmentleadsto a reduction in the value of DFE and, consequently,to a decreasein the tendencyof the fabric to shrinkuponwetting. This reductionin DFE resultsfrom the "with" scalecoefficient of friction increasingmorethan the "against"scalecoefficientof friction with treatment (58-63). Makinson (64) proposedthat chlorinationdegradesthe keratin material within the cuticle, which softensthe scalesand givesriseto an increasein the valuesof the coefficientof friction and a decrease in the value of DFE. Changesin friction have been found to occurmore rapidly with chlorinationin the acid region than in the neutralor alkaline regions(63,65,66).

Postchlorination microscopical studiesof keratin fibersshowa changein the surface structure(2,9,49,59,62,63,67-72). Acid chlorination appears to reactin a moresurface-specific mannerthan the neutralor the alkalinechlorination;surfacedetail after acidchlorinationoftenis barelydistinguishable (2,9, 55,63). Fibersurfaces appearto be lessaffectedasthe pH of the chlorinationtreatmentis increased, andthe scalestructure appearsto remainintact longer(2,9,63). Degradationof the fiber surfaceprobablyproceedsby a reactionfirst noted by Allw/Srden (72). The reactioncanbe observed throughmicroscopy duringtreatmentof the fibers with chlorine water and involves the formation of bubbles or sacs on the surface of

the scales.The Allw/Srdenreactionhasbeenshownto occurundera variety of conditions and over a wide rangeof pH (16,55,56,73-75). The formationof a jelly layer between the unattacked cortex and the attacked outer surface of wool fiber has been

observed;and with extendedchlorination, a collapsedscalestructure has been found (58,64,76). This reactionrequiresthat the epicuticlebe intactand sufficientareaof each cuticlecell be exposedon the surfaceof the fiber to allow the sacsto form. In human

hair, whereonlyone-sixthof eachcuticlecell is exposed on the surface,ascomparedto aboutthree-fourths exposed in the caseof wool, suchsacsare lesslikely to form. Instead,the whole surfaceof the hair fiber appearsto be raised.(73,77).

A mechanismfor the Allw6rden reactionhas beenproposed(73,78) in which as the

366

JOURNALOFTHE SOCIETYOF COSMETIC CHEMISTS

reagentdiffusesinto the cuticle, the proteinlying underthe epicuticledissolves, eventually causingthe epicuticleto loseits adherence to the substructure. As the solubility of the proteinincreases with treatment,an osmoticpressureis generatedwhich results in the formationof sacs.If the degradedproteinis of high enoughmolecularweight, it will not diffusethrough the epicuticle.As the reactionproceedsfurther, however,the molecularweight of the proteindecreases so that proteinsegmentsare able to diffuse throughthe epicuticle,causingthe AllwiSrden sacsto fiatten.The osmoticactivesubstances of the cuticle have been found to contain more than half of their sulfur in the

form of cystine,whereasonly 10 percentof the sulfuris in thisform in the degradation productswhichhavepassedinto the solution.This suggests that the presence of cystine is importantin keepingproteinchainslargeenoughto inhibit theirpassage throughthe epicuticle. WEIGHT

LOSS

The reactionof halogens with keratinfibershasbeenfoundto causeconsiderable weight loss(2,6,20,22,48-50). As a functionofpH, the weightlosshasbeenfoundto reacha minimum betweenpH 4 and 7, wheresometimesevena slight increasein weight has beenseen(2,22). Maximumweightlosshasbeenobserved in theacidregion,belowpH 4 (2,6,22,50). Thesedifferences in weight losshavebeenattributedto differences in the extent of disulfidebond oxidationand peptide bondcleavage.In the acid region, extensive peptidebondcleavage and disulfidebondoxidationhavebeennoted,which could be expectedto lead to considerable weight loss.BetweenpH 4 and 7, where peptidebondcleavage is low but oxidationof cystineis high, a smalllossof materialdue to the formercouldbe expectedto be compensated for by the latter, i.e., by an uptake of oxygenby the disulfidegroup. In the alkaline region, peptide bond cleavageis extensive,but thereis very little cystineoxidation.This combinationcanbe expectedto resultin a net weight losswhich, however,will be lessthan expectedin the acidregion. MECHANICAL

PROPERTIES

Changesin tensilepropertieshave beenusedto determinethe extent of structural damageproducedby halogenation in keratinfibers(45,49,50,55,58,59,79- 84). Generally, strength and elongation decreasewith increase in halogen treatment (30,49,50,59,84). Nondestructivemethodsfor studyingthe effectof halogentreatments on tensile propertiesalso have been used which examinethe changein the amountof work(2,12, 18,55,80,82) or force(58,81) requiredto extenda wet fiberby a given length. Thesemeasurements havebeencarriedout over a rangeof extensions (15-30 percent).The work or forcerequiredto stretchthe fibersis greatlyreduced after acid and neutral chlorinationtreatments.There is lesschangein thesevalueswith chlorinationin the alkalineregion.The changesin work seenby Houff et al. (82) are relatedto the amountof cystineconvertedto cysteicacid.

CONCLUSIONS

The distinguishing characteristic of the reactionof halogenswith keratinfibersis that the reactiondependsstronglyon pH. The rate of diffusionof halogensin keratinfibers

REVIEW

OF CHLORINE-HAIR

INTERACTION

367

is dependenton the form in whichthe halogensarepresent,which is determinedby the pH of the solution.Oncethe halogenpenetrates into the fiber, the reactionproceeds in a fashionsimilar to thosefoundin amino acidsand simplepeptides.In the acid and neutralregions,cysteicacid is the main oxidationproduct.In the alkalineregion, C-S bond fissionresultsin the formationof lanthionine.Evidenceindicatesthat peptide bondsarecleavedat all pH levels.Changesfrom thesereactions occurringin the chemical, physical,and mechanicalpropertiesof the fibers can be explainedin terms of disulfidebondoxidationand peptidebondcleavage. Although the literaturecited in this paperdoesnot pertaindirectly to hair, the information presentedshouldserveas a usefulbody of knowledgein light of which the chlorine-hairinteractioncanbe examined.Basicreactionswill mostlikely remainthe same,but the extentof reaction,and consequently the extentof effectson fiber properties, may be different.There is, thus, a needfor researchwhich focuseson conditions more specificto the chlorine-hairinteraction.Variableswhich shouldbe studied include chlorineconcentration,pH of the solution,temperatureof the solution, time of exposure,and the combinationof chlorinationwith popularcosmeticand caretreatments.

REFERENCES

(1) S. R. Trotman, The useof aqueous solutionsof chlorineand brominefor the productionof unshrink-

ablefinishon knittedwoolengoods,J. Soc.Chem.Ind., 52, 159-164T (1933). (2) M. Harris and D. Frishman,Someaspects of the chlorinationof wool to produceshrink resistance,

Am. DyestuffReptr., 37, P52-56 (1948). (3) P. Alexander,D. Gough, and R. R. Hudson,Reactionof oxidizingagentswith wool. 3. The influ-

enceof the morphology on the rateof reaction,Biochem, J., 48, 20-27 (1951). (4) L. Shapiro,Shrinkage controlof woolby wet chlorination,Am. DyestuffReptr., 37, 376-381 (1948). (5) D. Frishman, L. Hornstein, A. L. Smith, and M. Harris, Reactionbetweenwool and active chloride, Ind. Engng.Chem.,40, 2280-2284 (1948). (6) A. Kantouch and S. H. Abdel-Fattah, Oxidation of wool with chlorine and some chlorinated com-

pounds,Appl. Polym.Syrup.,18, 317-323 (1971). (7) H. Zimmerman,Felt resistant woolby wet chlorination,Am. DyestuffReptr., 36, 473-475 (1947). (8) R. C. Landwehrand D. Stigter,A simpleand qualitativeelectrophoretic techniquefor fibrousmate-

rial, Text. Res.J., 44, 45-47 (1974). (9) J. R. McLaughlin and W. S. Simpson,"Rate Studiesof the Chlorinationof Wool," in FibrousPro-

teins:Scientific Industrialand MedicalAspects, D. A.D. Parry and L. K. Creamer,Eds. (Academic Press,New York, 1980), Vol. 2, pp. 213-225. (10) P. Alexander,D. Gough, and R. F. Hudson,The reactionkineticsof wool with chlorinesolutions. II. Diffusionwithin the fibre, Trans.FaradaySoc.,45, 1109- l 118 (1949). (11) J. R. McLaughlin,Liquid-layerdiffusionduring chlorinationof wool,J. Text. Inst., 70, 214-216 (1979). (12) P. Nordomand N. W. Bainbridge,A laboratorystudyof dry chlorinationof wool at atmospheric

pressure.I. Conditionsof treatment,J. Soc.DyersColour.,84, 26-29 (1968). (13) A. Kantouch and S. H. Abdel-Fattah, Oxidation of wool with chlorine and some chlorinated com-

pounds,Kolor.Ertes,14, 2-9 (1972). (14) I. J. O'Donnell and E. F. Woods, The preparationof wool protein solutions,ProcIntl. WoolText.

Res.Conf.,Aust., B, 48-55 (1955). (15) P. Alexanderand R. F. Hudson,Wool--Its Chemistryand Physics(ReinholdPublishing,New

York, 1954), pp 271-281. (16) H. Vom Hove, The processes in the reactionof halogensupon wool, Angew.Chem.,47, 756-762 (1934).

368

JOURNAL OF THE SOCIETYOF COSMETICCHEMISTS

(17) R. Consden,A. H. Gordon, and A. J. P. Martin, The identificationof amino acids derived from

cystinein chemically modifiedwool,Blochem. J., 40, 580-582 (1946). (18) P. Alexander,M. Fox, and R. F. Hudson, The reactionof oxidizing agentswith wool. 5. The

(19) (20)

(21) (22)

oxidationproductsof the disulfidebond and the formationof a sulphonamide in the peptidechain, BiochemJ., 49, 129- 138 (1951). P. Alexander,R. F. Hudson,andM. Fox, Reactionof oxidizingagentswith wool. 1. The divisionof cystineinto two fractions of widelydifferingreactivities, Biochem. J., 46, 27-32 (1950). C. Earlandand D. J. Raven,Studieson the structureof keratin. III. The reactionof wool and horn keratinswith solutions of sodiumhypochlorite, Blochim. Biophys Acta,25, 41-45 (1958). M. W. Andrews,A. S. Inglis, and V. A. Williams, Chemicalchangesin the cuticle of oxidized wool, Text.Res.J., 36, 407-412 (1966). G. Valk, Reactionbetweenchlorineandwoolproteins.Part I: Natureof the chemicalmodificationof wool including proteinsfrom reactionliquors, Proc.3rd Intl. WoolText. Res. Conf., Paris, 2, 371-381 (1965).

(23) R. W. Moncrieff, Chemical changesin the keratin when wool is chlorinated, Text. Mfg., 93,

145-147 (1967). (24) I. B. DouglassandB. S. Farah,Chlorinationof alkyl disulfides andthe preparationof thiolsulfonate esters,_/.Org.Chem.,24, 973-975 (1959). (25) P. Alexanderand M. Fox, A comparison of the reactivityof the disulfidebondin wool andpeptides,

Proc.Intl. WoolText.Res.Conf.,Aust.,C, 35-48 (1955). (26) R. S. Asquith and N. H. Leon, "ChemicalReactionsof Keratin Fibers," in Chemistry of Natural

ProteinFibers,R. S. Asquith, Ed. (PlenumPress,New York, 1977), pp. 193-265. (27) P. Alexander, D. Carter, and C. Earland, The role of the disulfide bond in reactionswhich render

(28)

woolnon-felting, J. Soc.DyersColour.,67, 23-27 (1951). P. Alexander andD. Gough,The reactionof oxidizingagentswith wool.4. The reactivityof tyrosine,Biochem. J., 48, 504-511 (1951).

(29) S. R. Trotman,E. R. Trotman,andJ. Brown,The actionof chlorineandhypochlorous acidon wool,

J. Soc.Chem.Ind., 47, 4-8T (1928). (30) S. R. Trotmanand C. R. Wyche, The amino-nitrogen contentof wool in relationto chlorination, J.

Soc.Chem.Ind., 43, T293-295 (1924). (31) A. Kantouchand S. H. Abdel-Fattah,Action of sodiumhypochloriteon tx-aminoacids,Chemickg Zvesti, 25, 222-230 (1971). (32) N. C. Wright, The actionof hypochlorite on aminoacidsandproteins,Blochem J., 20, 524-532 (1926). (33) N. C. Wright, The actionof hypochlorites on aminoacidsand proteins.The effectof acidityand

alkalinity,Biochem. J., 30, 1661-1667 (1936). (34) L. Stankovic,Effectof amino acidson the amountof free chlorinein chlorinewater, Chemickg Zvesti, 14, 275-281 (1960). (35) L. StankovicandJ. Vasatko,The effectof oxidationand chlorinationprocess on amino acidsand

proteins,Chemickg Zvesti,14, 434-449 (1961). (36) E. T. Gray,Jr., D. W. Margerum,andR. P. Huffman,Chloramine equilibriaandthe kineticsof

disproportionation in aqueous solution,ACSSyrup. Ser.,82, 264-277 (1978). (37) D. W. Margerum,E. T. Gray, Jr., and R. P. Huffman, Chlorinationand formationof N-chloro

compounds in watertreatment,ACS Syrup.Ser., 82, 278-290 (1978). (38) F. LiebenandB. Bauminger,The effectof sodiumhypochlorite on aminoacidsandproteins,Biochem.

Z., 261, 387-392 (1933).

W. E. Pereira, Y. Hoyano, R. E. Summons,V. A. Bacon,and A.M. Duffield, Chlorination studies.II. The reactionof aqueous hypochlorous acidwith tx-aminoacidsand dipeptides,Biochim. Biophys. Acta, 313, 170-180 (1973). (40) J. C. Morris,"Kineticsof Reactions betweenAqueous ChlorineandNitrogenCompounds," in Principles andApplications of WaterChemistry, S. D. FaustandJ. V. Hunter, Eds. (JohnWiley andSons, New York, 1967), pp. 23-53. (41) S. Goldschmidt, E. Wiberg, F. Nagel, andK. Martin, ProteinsIV. The degradation of polypeptides andaminoacidsby hypobromite, Ann., 461, 1-38 (1927). (42) E. J. CoreyandL. F. Haefele,Oxidativecleavage of amides.A methodfor selective chemicaldegradationof peptide,J. Am. Chem.$oc.,81, 2225-2228 (1959). (39)

REVIEW OF CHLORINE-HAIR INTERACTION

369

(43) T. F. Spande,B. Witkop, Y. Degani, and A. Patchornik,Selectivecleavageand modificationof

peptidesandproteins,Adv. Protein Chem.,24, 97-260 (1970). (44) S. Goldschmidtand K. Strauss,ProteinsVII. Degradationof polypeptideswith hypobromite,Ber., 63B, 1218-1221 (1930). (45) J. R. McPhee,Reactionof woolwith oxidizingagentsin concentrated saltsolutions,Text. Res.J., 30, 349-357 (1960). (46) E. Weidemanand H. Grabherr,The urea-bisulfitesolubilityof chlorinatedwool, SAWTRI Technical Rep., No. 158 (1971). (47) L. Meunier and H. Latreille, Commercialchlorinationof wool, Chim. Ind., 10, 636-642 (1923). (48) L. VignonandJ. Mollard,The chlorination of wool,Compt. Rend.,142, 1343-1345 (1906). (49) S. R. Trotman,Chlorination ofwool,J. Soc.Chem.Ind., 41, 219-224T (1922). (5O) (51) (52) (53)

(54)

H. SobueandY. Hirano, The chemicaltreatmentsof woolfiber. III. Treatmentsanalogous to hypochloritechlorination, J. Soc.Chem.Ind.,Japan,37, 427-430 (1934). j. R. Adams,Dyeingof chlorinated wool,J. Phys.Chem.,27, 81-84 (1923). A. Herzog, Visiblechanges in woolfollowingchlorination,Mell. Textilber.,9, 33-38 (1928). S. R. Trotman, H. S. Bell, and H. Saunderson, Propertiesofchlorinatedwool and the determination of damagein chlorinatedknitted woolengoods,J.Soc.Chem.Ind., 53, 267-273T (1934). S. R. Trotman and H. S. Bell, The dyeing of chlorinatedwool, J. Soc.Chem.Ind., 54, 29-30

(1933). (55) D. Frishman, A. L. Smith, and M. Harris, Relation of fiber diameter to modification of wool re-

suitingfrom chemicalprocessing, Text.Res.J., 16, 160-162 (1946). (56) D. R. Lemin and T. Vickerstaff,Somephysico-chemical propertiesof damagedwool, Symp.Fibrous Proteins, Soc.DyersColour., 129-141 (1946). (57) H. Luttinghaus,Influenceof chlorinationof wool dyeing, Am. DyestuffReptr., 37, 464-465,

471-472 (1948). (58) K. R. Makinsonand I. C. Watt, Somephysicaleffectsof acid wet chlorinationon wool fibers in

relationto its useasa shrinkproofing treatmentfor wool, Text.Res.J., 42, 698-703 (1972). (59) j. H. Bradbury,The theoryof shrinkproofing of wool. II. Chemicalmodificationof the fiber surface

and its effecton felting shrinkage,frictionand microscopic appearance, Text. Res.J., 31, 735-743 (1961). (6O) M. Lipsonand P. Howard, Frictionbetweenkeratin surfaces as affectedby someshrinkproofing

treatments,J.Soc.DyersColour.,62, 29-32 (1946). (61) J. LindbergandN. Gralen,Measurement of frictionbetweensinglefibers.II. Frictionalpropertiesof woolfibersmeasuredby the fiber twist method,Text. Res.J., 18, 287-301 (1948). (62) K. R. Makinson,Mechanisms involvedin shrinkproofing by degradativetreatments,Appl. Polym. Symp.,18, 1083-1096 (1971). (63) N. Fair andB. S. Gupta, Effectsof chlorineon frictionandmorphologyof humanhair,J. Soc.Cosmet. Chem.,33, 229-242 (1982). (64) K. R. Makinson,Somenew observations on the effectsof mild shrinkproofing treatmentson wool

fibers,Text.Res.J., 38, 831-841 (1968). (65) J. Lindbergand N. Gralen, Measurement of frictionbetweensinglefibers.II. Influenceof various

oxidizingagentson the frictionalpropertiesof wool fibers,Text. Res.J., 19, 183-201 (1949). (66) A. K. van der Vegt and G. J. Schuringa, The relationbetweenwoolfelting and singlefiber proper-

ties,Text.Res.J., 26, 9-16 (1956). (67) P. Alexander,The chemicalreactivityof woolin relationto antishrinkprocess, Am. DyestuffReptr., 39, 420-430 (1950). (68) A. Hepworth,J. Sikorski,D. J. Tucker,and C. S. Whewell, The surface-topography of chemically

treatedwool fibres.,J. Text. Inst., 60, .513-546 (1969). (69) J. R. McPhee,Increasing the feltingrateof wool, Text.Res.J., 32, 14-23 (1962). (70) J. H. Bradbury,G. E. Rogers,and B. K. Filshie,The theoryofshrinkproofingof wool. V. Electron

andlight microscopy of woolfibersafterchemicaltreatments,Text.Res.J., 33, 617-631 (1963). (71) B. Forslind, B. A. Atzelius, B. Liliesvan,and G. M. Roomans,"Green Hairs: ElementaryX-ray

Analysisin the ElectronMicroscope,"in Hair Research: Statusand FutureAspects, C. E. Orfanos,W. Montagnaand G. Stiittger,Eds. (Springer-Verlag, New York, 1981), pp. 163-168. (72) K. yon Allw/Srden,The propertiesof wool and a new chemicalmethodfor detectingdamagedwool, Z. Angew.Chem.,29, 77-78 (1916).

370 (73)

JOURNAL OF THE SOCIETYOF COSMETICCHEMISTS

j. H. BradburyandJ. D. Leeder,Keratinfibres.IV. Structureof cuticle,Aust.J. Biol. Sci., 23,

843-854 (1970). (74) J. H. BradburyandJ. D. Leeder,Keratinfibres.VI. Mechanism of the Allw/3rdenreaction,Aust.J. Biol. Sci., 25, 133-138 (1972). (75) J. D. LeederandJ. H. Bradbury,Effectsof shrinkproofing and other chemicaltreatmentson the

epicuticleof wool, Text.Res.J., 41, 215-218 (1971). (76)

j. B. Speakman andA. C. Goodings, Chlorination ofwool,J. Text.Inst.,17, T607-614 (1926).

(77) J. D. Leederand J. H. Bradbury,The discontinuous natureof epicuticleon the surfaceof keratin

fibers,Text.Res..]., 41, 563-568 (1971). (78) G.J. Schuringa,T. Konings, and A. J. Ult•e, Jr., Osmotic active substances of the Allw/3rden

reaction,Text.Res.J., 23, 645-646 (1953). (79) H. Russina,Chlorination and determinationof wool, Mell. Textilber., 12, 404-406 (1931). (80) R. Bentham,C. B. Stevens,and C. S. Whewell, Someobservations on the degradationof wool by

hypochlorites with specialreference to the actionof hypochlorites on chemicallymodifiedwool, Proc. Intl. WoolText. Res.Conf.,Aust., C, 277-285 (1955). (81) K. Baird, P. Nardon, and R. A. Foulds,A laboratorystudy of dry chlorinationof wool at atmosphericpressure. II. Evaluationof treatedwool,.]. $oc.DyersColour.,84, 29-39 (1968). (82) W. H. Houff, C. J. Wells, and R. H. Beaumont,Chemicaldamagein wool. III. Effectsof aqueous chlorine,Text. Res.J., 27, 961-965 (1957). (83) H. P. Lundgren,Someobservations on the oxidativedegradationof the proteinchainsof wool,J. Text. Inst., 51, T806-816 (1960). (84) I. C. Watt and R. Morris,The absorption of chlorineby wool, Text.Res.J., 34, 701-705 (1964).

View more...

Comments

Copyright � 2017 SILO Inc.