Novel Applications of Distributed Fiber-optic Sensing in Geotechnical Engineering

May 17, 2017 | Author: Albert Baumhauer | Category: N/A
Share Embed Donate


Short Description

Download Novel Applications of Distributed Fiber-optic Sensing in Geotechnical Engineering...

Description

Novel Applications of Distributed Fiber-optic Sensing in Geotechnical Engineering

Michael Iten

Veröffentlichungen des Instituts für Geotechnik (IGT) der ETH Zürich Band 239, November 2011

zur Publikation

vdf Hochschulverlag AG an der ETH Zürich

ETH-Dissertation Nr. 19632 © 2012, vdf Hochschulverlag AG an der ETH Zürich ISBN: 978-3-7281-3454-7

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

aus: Michael Iten, Novel Applications of Distributed Fiber-optic Sensing in Geotechnical Engineering, IGT 239 © vdf Hochschulverlag 2011

Foreword In the last two decades, Brillouin distributed fiber-optic sensing has became a widely accepted, mature technology. Geotechnical monitoring applications of this technology, however, are still rare, as the fragile fiber-optic cable and the harsh soil environment are a difficult combination. Additionally, due to high uncertainties in soil behavior, deeper understanding of geomechanical principles is necessary in order to achieve meaningful results when using these sensors. Within this context, the thesis of Mr. Iten is timely for three reasons. On the one hand, a number of novel geotechnical applications of distributed fiberoptic sensing has been successfully identified, developed, implemented and evaluated. On the other hand, the data obtained in these applications allowed for the better understanding of the underlying geotechnical principles. Finally, in order to enable fiber-optic sensing for the above applications, significant developments in the fiber-optic technology, the sensors and the data interpretation were made, facilitating a large number of potential further applications. The contribution of Mr. Iten is both important and welcome. Firstly, onedimensional structures were considered: strain distribution along a soilembedded cable during pullout and strain distribution along a monitoring ground anchor during pullout. As a result, new insight into the progressive failure phenomenon was achieved and explained in a conceptual analytical model. Secondly, the successful implementation of the technology to onedimensional structures inspired an attempt to apply the sensors in two- and three-dimensional problems, such as a road-embedded sensor for landslide boundary evaluation; a soil-embedded sensor for landslide boundary evaluation and a borehole-embedded sensor for landslide boundary evaluation. As a result, new understanding of the landslide mechanisms in the Brattas and Laret areas was achieved for the ongoing landslide research and monitoring in St. Moritz, Switzerland. Finally, to facilitate fiber-optic sensing for the above applications, significant advances in the technology, the sensors and the data interpretation were achieved.

iii aus: Michael Iten, Novel Applications of Distributed Fiber-optic Sensing in Geotechnical Engineering, IGT 239 © vdf Hochschulverlag 2011

The significance and quality of this work has been partially documented by publications from Mr. Iten at seven international conferences of high standards and one journal publication. Additionally, the level of innovation in this study and its commercialization potential has been awarded in business plan competitions by two Venture 2010 and two Venture Kick Prizes.

Prof. Dr. Alexander Puzrin

Zurich, 2. August, 2011

iv aus: Michael Iten, Novel Applications of Distributed Fiber-optic Sensing in Geotechnical Engineering, IGT 239 © vdf Hochschulverlag 2011

Acknowledgments A scientific work at the scale of this thesis is only possible through collaboration with other people. I would therefore like to warmly thank everybody who made this study a rewarding experience and without whom it may not have culminated in the present publication. Grateful thoughts are directed first to my thesis supervisor, Prof. Dr. Alexander Puzrin, for giving me a vote of confidence and encouraging me to pick such an interesting and prosperous research field. I also appreciated the seriousness and critical eye with which he read and evaluated this study and his very valuable inputs. In addition, I would like to thank Sasha for the great working atmosphere created in his research group and, most importantly, the extraordinary amount of support and continuous motivation provided during the difficult times. I am also thankful to the members of the examination board, Prof. Dr. Peter Marti, Prof. Dr. Luc Thévenaz, and Prof. Dr. Alexander Puzrin for the careful reading and comments, as well as for the courteous atmosphere created during the doctoral examination. Prof. Dr. Luc Thévenaz and the Group of Fiber Optics at EPF Lausanne (Stella Foaleng Mafang and Jean-Charles Beugnot) significantly contributed to the content of this study during many occasions: the joint laboratory campaigns, the co-authored paper, the conferences, the COST TD 1001 action, and uncountable discussions on the topic. Thank you! The interaction with the industry helped to give this research a focus on practical applications right from the start. I would like to mention Solexperts (Dr. Arno Thut, Daniel Naterop and Patrick Steiner), our CTI project partners Brugg Cables (Thomas Hertig, Dr. Massimo Facchini, Alix Diserens and Beat Öschger) and Omnisens (Dr. Marc Niklès and Dr. Fabien Ravet), the VSS (Verein Schweizer Strassenfachleute), and the city of St. Moritz. The support and working environment created by my friends and colleagues at the Institute for Geotechnical Engineering and the ETH Zurich was

v aus: Michael Iten, Novel Applications of Distributed Fiber-optic Sensing in Geotechnical Engineering, IGT 239 © vdf Hochschulverlag 2011

appreciated every single day. Thank you Dr. Carlo Rabaiotti, Dominik Hauswirth, Andreas Schmid, Dr. Linard Cantieni, Esther Schilling, Ivo Sterba, Dr. Markus Caprez, Ernst Bleiker, Cornelius Senn, Stefan Annen, Frank Fischli, Pascal Minder, Markus Schwager, Rolf Zumsteg, Dr. Erich Saurer, René Rohr, Marco Sperl, Alfred Ehrbar, Heinz Buschor, Adrian Zweidler, Mengia Amberg, Dr. Michael Plötze, Dr. Jan Laue, Prof. Dr. Sarah Springman, Dr. Sophie Messerklinger, Felix Wietlisbach, Dominik Werne, and Markus Baumann. In addition, the interaction with the following experts significantly contributed to the thesis and my personal development: John Dunnicliff, Dr. Wolfgang Habel, Jeff Miller, Dr. Alexis Mendez, and Prof. Brian Culshaw. To Dr. Matt Kropf a big thanks for the careful proofreading. Last, but essentially first and foremost, I wholeheartedly thank my parents, Hanni und René. I am deeply grateful for the invaluable and generous support I have received from you during all these years and for encouraging and supporting me devotedly in my decisions. My deepest thanks go to my wife, Rachel, for embarking with me on this long and stimulating journey and for always carrying me through. Obrigado!

vi aus: Michael Iten, Novel Applications of Distributed Fiber-optic Sensing in Geotechnical Engineering, IGT 239 © vdf Hochschulverlag 2011

Abstract In the last two decades, Brillouin distributed fiber-optic sensing has became a widely accepted, mature technology. On the other hand, geotechnical monitoring applications of this technology are still rare, as the fragile fiberoptic and the harsh soil environment are a difficult combination. Additionally, due to high uncertainties in soil behavior, deeper understanding of geomechanical principles is necessary in order to achieve meaningful results when using these sensors. In this study, novel applications of distributed fiber-optic sensing in geotechnical engineering were identified, developed, implemented and evaluated. Firstly, one-dimensional structures were considered: 

Strain distribution along a soil-embedded cable during pullout;



Strain distribution along a monitoring ground anchor during pullout.

As a result, new insight into the progressive failure phenomenon was achieved by documenting the phenomenon of residual shear stress increase with increasing pullout load. This phenomenon is explained in a conceptual analytical model. The successful implementation of the technology to one-dimensional structures inspired an attempt to apply the sensors in two- and threedimensional problems: 

Road-embedded sensor for landslide boundary evaluation;



Soil-embedded sensor for landslide boundary evaluation;



Borehole-embedded sensor for landslide boundary evaluation.

For the ongoing landslide research and monitoring in St. Moritz, Switzerland, new understanding of the landslide mechanisms in the Brattas and Laret areas was achieved. The road-embedded sensor at the Brattas site detected an additional shear zone, which was later confirmed by a water pipe breakage that occurred at exactly the same location. The soil-embedded sensor at the vii aus: Michael Iten, Novel Applications of Distributed Fiber-optic Sensing in Geotechnical Engineering, IGT 239 © vdf Hochschulverlag 2011

Laret site confirmed seasonal patterns of the surface displacement in a moving soil mass independently observed in inclinometer measurements. To facilitate fiber-optic sensing for the above applications, significant advances in the technology, the sensors and the data interpretation were necessary: 

Spatial resolution of the Brillouin sensing technology had to be improved significantly. This was achieved by facilitating and testing the development of Brillouin Echo Distributed Sensing;



Elaborate laboratory testing of the sensors and the sensing system led to the development and improvement of new commercial strain sensing cables. In addition, sensor integration techniques were developed and successfully applied;



Options of improving the data interpretation had to be evaluated and applied.

The present study describes in detail the development and progress of these novel geotechnical monitoring applications at the IGT of ETH Zurich during the last 5 years.

viii aus: Michael Iten, Novel Applications of Distributed Fiber-optic Sensing in Geotechnical Engineering, IGT 239 © vdf Hochschulverlag 2011

Zusammenfassung In den letzten zwei Jahrzehnten hat sich die Brillouin-Sensorik, mit welcher Dehnungen kontinuierlich entlang einer bis zu 30 km langen Glasfaser gemessen werden können, zu einer ausgereiften Technologie entwickelt. Geotechnische Überwachungsanwendungen dieser Technologie sind jedoch noch selten: Die zerbrechliche Glasfaser und die harschen Bedingungen im Baugrund stellen eine schwierige Kombination dar. Hinzu kommt, dass die Unsicherheiten bezüglich des Baugrundverhaltens ein vertieftes geomechanisches Verständnis voraussetzen, um aussagekräftige Resultate mit diesen Sensoren zu erhalten. In der vorliegenden Studie wurden neue Anwendungen der kontinuierlichen Glasfasersensorik in der geotechnischen Überwachung erörtert, entwickelt, eingebaut und evaluiert. In einem ersten Schritt wurden eindimensionale Strukturen geprüft: 

Dehnungsverteilung entlang eines im Boden eingebauten Kabels während dem Herausziehen;



Dehnungsverteilung

entlang

eines

Bodenankers

während

dem

konnten

neue

Erkenntnisse

bezüglich

des

Herausziehen. Aus

diesen

Versuchen

progressiven Versagens zwischen Boden und Struktur gewonnen werden: Die Rest-Scherspannung hat sich mit zunehmender Ausziehkraft erhöht. Dieses Phänomen, welches während den Versuchen gut dokumentiert wurde, wird mittels eines konzeptuellen analytischen Modells hergeleitet und erklärt. Die erfolgreiche Anwendung der Technologie in eindimensionalen Strukturen motivierte dazu, die Sensoren auch für mehrdimensionale Fragestellungen einzusetzen: 

Instrumentierte Strasse zur Evaluierung einer Rutschhanggrenze;



Direkt im Baugrund eingebautes “Mikro-Anker”-Sensorsystem zum Messen von Bodenverschiebungen;

ix aus: Michael Iten, Novel Applications of Distributed Fiber-optic Sensing in Geotechnical Engineering, IGT 239 © vdf Hochschulverlag 2011



Instrumentiertes

Bohrloch

zur

Evaluierung

einer

Rutschhang-

Gleitfläche. Diese drei Anwendungen wurden auf den Kriechhängen Brattas und Laret in St. Moritz, Schweiz, ausgeführt. Die Hänge rund um St. Moritz werden schon seit Jahren konventionell überwacht. Aus den Projekten resultierten neue Erkenntnisse bezüglich der Kriechhanggrenze. So wurde im Gebiet Brattas eine zusätzliche Scherzone ermittelt. Ein Wasserrohrbruch bestätigte später die Lage der Scherzone. Zusätzlich konnten mit dem im Boden eingebauten System die saisonalen Bewegungsschwankungen erfasst werden. Um die oben erwähnten Anwendungen zu ermöglichen, waren Fortschritte in der Technologie, den Sensoren und der Dateninterpretation notwendig: 

Die längenverteilte Auflösung des Messsystems musste verbessert werden. Dazu wurde die an der EPFL entwickelte Brillouin Echo Distributed Sensing Technologie ein erstes Mal erfolgreich im geotechnischen Labor eingesetzt;



Ausführliche Versuche mit Sensoren und Sensorsystemen ermöglichten die Entwicklung von neuen, verbesserten, kommerziellen Sensorkabeln. Dabei wurde auch die Sensorintegration weiter vorangetrieben;



Optionen zur Dateninterpretation wurden evaluiert und angewandt.

Die vorliegende Arbeit beschreibt im Detail die Entwicklung und den Fortschritt mit neuen geotechnischen Anwendungen der kontinuierlichen Glasfasersensorik am IGT (ETH Zürich) über die letzten 5 Jahre.

x aus: Michael Iten, Novel Applications of Distributed Fiber-optic Sensing in Geotechnical Engineering, IGT 239 © vdf Hochschulverlag 2011

View more...

Comments

Copyright � 2017 SILO Inc.